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ABSTRACT

Cluster analysis involves the problem of optimal partitioning
of a given set of entities into a pre-assigned number of mufually
. exclusive.and_éxhaustive clusters. Here the problem is formulated
in two different ways with the distance function (a) of minimizing the
within groups sums of squares and (b) minimizing the maximum distance
within groups. These lead to different kinds of linear and non-linear
' (0-1).integer programming problems. Computational difficulties are

discussed.




CLUSTER ANALYSIS AND MATHEMATICAL
" PROGRAMMING

e . M.R.RAO

INTRODUCTION

Cluster analysis involves the problem of optimal partitioning

of & given set of entities into a number (pre-assigned). of mutually

3
exclusive and exhaustive clusters. The criterion for optimality

depends heavily upon the application in which it is to be used.

It is not the purpose of this paper to discuss the relative merits

of the various criteria. A discussion of this can be found in

"Sokal and Sneath [1].

In our analysis here, we confine ourselves to distance based

cluster analysis in which a distance measure between the various

increasing attention recently. A detailed discussion of this is
given by Majone [2] and Majone and Sandy [3]1. Even ghough a
distance "measure between the various entities is known. the cri-

terion for optimal partitioning still depends upon the intended

-entities is available. This type of cluster analysis has received

9pplication. Again, it is beyond the scope of this paper to dis-

cuss the relative merits of the various possible criteria but re-
ferences can be found in Jensen [5] where a dynamic programming
8lgorithm is given for minimizing the within - groups sums of

squares. : . ‘ y

One of the purposes of this paper is to consider the crite-
rion of minimizing the within groups sums of squares and show how
the protlem can be formulated as a mathematical programming pro-

blen. In the general case, the formulation leads to a fractional

‘non-linear

»

Sce also [L]for an application of distance based cluster analys

»
-
-




0-1 programming problem with constraints and there does not appear
to be any computatlonally efficient procedure for solving such a
problem. Fortunately, the problem does appear to be computational-
1y tractadble in some variants and speclal cases which are digcus-

sed in detail.

An alternate criterion,viz., minimize the maximum distance
within groups, is also considered. The formulation in thig case
leads to a linear integer (0-1) programming problem which can'be
solved by any one of the known techniques [6,7T]. A simple but
efficient algorithm is given to solve this problem when the number

of pre-assigned groups is restricted to be only two.

FORMULATION OF THE PROBLEM.

The following definitions are used in the formulation

is & metric distance between entities i and j.

K is the number of entities ’

M i¢ the number of pre-assigned groups. _

Ve gi%eﬁa formulation of the problem under different criteria.

1) Minimize (maximize) the within (between)—groups sums of squares
Let X. be equal to 1 or O dependlng upon whether the 1th entity
is in group k or not.

Let dij ye a Euclidean metric.

The problem can now be written as

N-1 N 2 N

M .
‘Min ¢ [( Z £ a7, x.. x..)/ ¢t x..] (1)
k=1 i=1 j=j+1 39 1K gkTT. . TiE -
M .
Subject to . I x. = 1 for i = 1,2,...N (2)
: ik -
k=1 : . .
Xk 2 O and integer valued for i = 1,2,...N '
k= 1,2,...M -
) .
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This is & fractional non-linear 0-1 prqgramming problem which
-“4{s very difficult to solve in general. However two special gases
.of this appear to be less difficult and they are discussed next.

e) The number of entitiés in each group is specified :

. Sometimes the number of entities in each group is specified

in advance. Let n, be the number of entities in group k such that
M T T ’ : o»
I n

k=1

k- N.

The objective function (1) now becomes

‘M, N1 N -, , (3)
Min & — (L L 47, x,. X..) ' ' 3
k=1 Pk i=1 j=itl ij Tik TJk
R
and we have an additional set of constraints, I Xip = By
) ~ . : . i=1

k=1,2,...M (L)

'This is still é non-linear O-1 programming problem with con-
straint set’ (2) and (4). However since all n, ere specified in ad-
vance, we do not have a fractional objective as in (1) and there

_ere at least two possible approa;hes to aétempt to solve this problecx
The first approach is to treat this as a constrained non-linear
boolean programming problem and use the methods outlined by Hammer
and Rudeanu [8]. Another approach is to linearize the obje-tive
functiod'aQ the expense of increasing the number of constraints
and solve the resulting problem by any of the known techniques for
linear integer programming. The O-1 programming problem to be
solved is as follows

M N=-1 N

"Min I %— ('t L d?. y?.)A - (5)
k=1 Pk i=1 j=i+1 Y9 T . .
Subject to Xjp ¥ X " y?. < 1 i=1,2,...N-1 (6)

e 1) —
. J = i+1,i42,...N

k=1,2,...M




N
.2 xik = nk k=1,2,...M
i=1
M .
z xik=1 ) i=1,2,...X%
=1 .

. k . '
All X5k aéd yij > O and integer valued.
In this formulation, the number of constraints increases rapidly

with N and M and hence this approach is computationally useful only
for small values of N and M. '

b) The number of pre-assigned groups is equal to two
A method for cluster analysis suggested by Edwards and Cava;}i-
8forza [9] involves dividing the entities into two most-compact
clué;ggs and repeating the process sequentially. This, in. our
notatio#/implies that at each stage of the process we have M = 2.
"In thi§ case, a better formulation of the problem is possible
vith the following notation o |
Let x; = 1 or 0 depending upon qpether the ith entity is in group
1 or 2.

The problem can dbe written as

(N-l N 5 ) N N-1 N s
Min[( ¢ z d;. x; x.)/ ¢ x.]+[{ ¢ T a5 . (1-x.)(1-x.)}
i=t j=i+1 01 9 4.0 YT geg jeier I i J
i N
/(N - ¢ xi)] (1)
i=1

x; = 0O or 1 for all 1i.

This is & fractional non-linear O~1 programming probdlem with no °
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additional constraints.This is also a boolean programming prbbleq an
one approach to solve this problem is to use the methods given in
[8]. We outline two other methods and of these the second one
:..appears to be promising. It shéuld'bp pointed out however, that

so far no computational experience is available.

1) In the first approach, we rewrite the objective function (7)
as follows : :

B N N-1 N o . N N-1 N~ \
Min [(N - % xi)(.z T d7s X, x.) + { ¢ xi}{ T L
: i=1 . i=1 j=i+1 9 J. i=1 i=1 j=i+1

2 o Y 8

[ ]

TRAC I
1 1
Let the objective function (8) without the denominator be
referied to as (8'). We note that the denominator in (8) is a
maximum if ’

1 where

[ -]
o=

x. = [
i=1 *
[g] is the least integér greater than or'éﬁuél to N/2.

We first minimize the objective function (8') by using the

‘methods given in [8]). If we are fo;tuna?e:to obtaip

N
_ tox; = (31 or (31 -1
. : i=1
' N N, =
the problem is then solved. Othervise, let I x, =m < [51'
: i=1

Now, we know thal the only possible solutions that may improve

the value of (8) should necessarily satisfy the following relation

‘m< I x, <N - Am . . - (9)

Rl

x There is no loss in generality .in assuﬁing that m < [g] since if

this were not true we could use N - § x; instead of I x
i=1 : i=1




:The next step is to consider (8') and solve the problem with the
added constraint (9). If the current solution has a better value
"for the objective function (8) than the best velue found till .
'now, it is retained as therest value found thus far. The process,

is repeated until ‘either I x; ='[g] or the velue of the function
(8') becomes so high that the value for the objective function (8)

would be higher than the current best value even if we assume
N

. N 4 L
: x, to be equal to [5] or Lg; -1

i=1 ?

The efficiency of this approach depends heavily upon the abi-
lity to find the solution of (8') with the restriction (9). At
_present, there does not appear to be efficient methods for doing
" this.

2) An alternate approach which appears to be promising is to use

branch and bound methods to solve this problem. First we note
that the problem is very similar to the problem of "selecting

" an opfimum subset” described by Beale [10] where a tree-search

(branch and bound) procedure is outlined. Using the terminology

in [10], ve briefly describde the procedure first and then indicate

in some detail how the varlous steps can be performed for this

problem.

The root of the tree corresponds to a partial solution in
wvhich all the elements2 are free to be assigned. We select one
element and we now have two possibilities of assignmentr We can
assign the element to group 1 or group 2. These two possibilities
correspond to the two branches emanating from the root. For con-
.venience, ve will always write the assignment of an element to V

group 1 as the branch to the right and always branch to the right

%

For convience we use the word element to refer to an entity.

L4
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‘first. Thus, at any node of the tree, we have a partial solution

‘with some elements assigned to group_ 1, some assigned to group 2

vhile others are yet to be assigned. A complete solution is one

-in which all the elements have been assigned and this corresponds

to an end of the tree.

Before we branch from a particular'no@g, we compute a lover
bound for the objective function. If the lower bound is greater
then or equal to the best complete solution.found.so far, we do
not branch further from this node. 1In this case, we back-track
along the tree until we reach sa node. with an‘unexplored branch to
the left. If no such node exists,.fhe problem is solved and the best

complete solution found so far is the optimal solution. 1In the

"other case, where the lower bound is less than the value of the

current best solution, we need to branch further. We select a
varigble not yet assigned and branch to the right. We continue
branching until we reach an end of the tree or the lower bound
test indicates that we need not branch further. When an end of

.the tree is reached, it would represent an improvement in the

objective function and hence it is retained as the current best
solution. From the end of the tree, we then back-track along the

tree until we reach a node with an unexplored branch to the left.

SELECTION OF AN ELEMENT AT A NODE.

-*

At eny particular.node, we have a set (possibly empty) of =
flements in group 1 and a set (possibly empty) of elements in group
2. If we need to branch further, we select an element not yet
assigned and branch to the right. 1In our procedure, this corres-
ponds to assigning this selected element to group 1. So the se-
lection of an element is made such that the sum of the distances be-

tveen this element and all other elements already in group 1 is
minimum.

vy
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COMPUTATION OF LOWER BOUND AT A NODE.

"We first give some notations for convenience. At a givén node
let ' . ' . .
x; = 1 for all
x;, = 0 for 'all assigned to group 2
Let N, = {1/xi 1}, and N, = {1/xi = Q}.

Let.n1 and n, be the number of elements in N

e

assigned to group 1

He

1 and N2
Let ng =N - n, = n, be the number of elements not yet assigned

resrectively.

N 3
toc any group and let N, be a set consisting of these n_, elements.

3 3

Let K, = I d.. and X, = z a..
P laggen, B 2 g e, M

Let D be a N x N symmetric matfix giving the. distance between the

entities. Let F be a'n, x n, sub-matrix of D giving the distance

3
between an element in N3 end an element ﬁn Nl' Let Fi be the sum
of the elements in row i of matrix R.

Let H he an, xn,

element in N, and an element in N,. Let H; be the sum of the

submatrix of D giving the distance between an
elements in row i of the matrix H.

We assume that matrices H.and F are arranged in such & manner

that
IKi < Hj . fpr i< .
3j'i_<_j'j. for i < j.

Let C be a d3 X né symmetric sub-matrix of D giving the dis-
.tance between each pair of elements in N3. The diagonal elements

of C are assigﬁed & very high value («).

We are interested in finding



9. i
K, + L d.. x, x. + L d.. x. x.
' iew,,jeng P9 Y g geny, 1Y
Z = Min { :
n, + I X.
1 . i
L e
K, + T a; (1=x,)(1-x.) + 5  a,.(1-x.)(1-x.)
2 . . g 1) 1 J . & 13 2 J
. X 16N2,36N3 1,36N3 . (10)
\ “n, + (n, - £ x.) : )
2 3 ieN i
3
wheré x. = 0 or 1
i ) Y
For any fixed value for iéN x; = né; let hg = nj - nj,
o= ' 3
P = n, + né and t = n, + ng. Now we can write (10) as
"2' = Min t[ oz d.. x, x, + ) d.. x. x.]
ieN ,jemy M9 I i,deN, o
+p [ z d.. (1=x.)(1=x.) + £  a..(1=x.)(1-x
: . . ij i J . ij i
.1fN2,JéN3 1,;§N3
8ince Klt and Kap V are constants and the denominator is also

e constant equal to pt.

~

How, there are several ways of finding & iowef bound for 2!
and some of these are listed below. ‘
By varying né over its range O to ng, we obtain ny + 1 lower bounds
for Z' and the least of the lower bounds gives the desired bound
for Z in (Jb). We should point out that although it might at first
appear to be time consuming to get ny + 1 lower boﬁnds for 2', many
of these calculations are very easy to perform:0f course, without
computetional experience, it is difficult to say how effective would

be the bound for Z obtained in this manner.




. né
vhere u, = (t) Min b d.. x. x. = (t) I F,
: 1 i€N,,jeN 1) 71 %) i=1.1 .
1 3 . n3 _
u, = (p) Min L d..(1-x.)(1-x.) = (p) © H. '
2 ieN,,jen, 9 1 J jeq & ‘
3 4
ug = [(t)Min b3 d; s xg xj]+[(p) Min I dij(1-xi)(1-xj)]

iljeN3 +d . 1956N3

In order to find us wve first note that the summation (I) terms
in ug consist of v = [né(né—1)+ng(n§-1)]/2 terms.in either the upper3
or the lower triangular part of the symmetric matrix C. Therfore
& lower bound for ug is given by Min [ t, pl multipliéd .
by the sum- of the v smallest elements of the upper half of matrix C.

o .
ii) 2z > u, tu, +ouy

where u, and u2 are as given in i) and

i 1

-

= Min [t( £ d.. x. x. b {. 1. . (1=-x:)(1-x.)
u, = Min L (. : NB;IJ x4 xJ? + p{i’§€N3d13(1 xl)(1 xJ)}]

u, = Min [t( £ d, {x. x. + (1-%.)(1-x.)})+(p-t) £ d, . (1=x.)(1=x.
. h 1.561{3 13 .1 J 1 J . i’jeNs 1) 1 J

v
[
W
+
e
o

<
&
[+
"
(4]
=
"

= t Mi I oA . {x. x. + (1-x.)(1-x.
5 . Min [i’ij 13{"1 x; ( xl)(l xJ)}]

3 We will take the upper triangular part of the matrix C.

If ¢ > p, a similar procedure would hold but.we do not repeat’
the details here, C
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which is equal to t multlplled by the sum of the v terms of’ the mé¢
trix C (as described in i.) -

w, = (p-t) Min I a..(1-x,)(1-x.)
6 i,jeng 19 1 J

In 6rder to find ug we note that the summation term consists
_of r = ng(ng-1)/2.terms in the upper half matrix C. 8o a lower
bound for ug is given by (p-t) multiplied by the r smallest
elements of the upper half of C.

iii) zZ' > u, * (u3 or.uh)

wvhere ug and'uh are as given in i) and ii) respectively and

w, = Min [t( I  d,. % x) +pl £  di. (1-x.)(1=x.)}]
T ien,jeaiy 291 ieN,,jeNg : J

In i) we used & lower bound of u, + u2 for u7. A better
lover dbound can be obtained for__u7 by solving a transportation
problem [11] as indicated below. Let the elements of N, be num-

.4 3
Let Fl be the sum of 811l the elements of a

3° Similarly, let H?!

be the sum of all the élements of a row in H corresponding to ele:-

bered as 1,2,... n3.
v rovw in F corresponding to element i in N

t ii N, -
. ment 1 1in 13

How, we have to subdivide the ng elements of N3 into two sub:

sets one consisting of né elements and the other consisting of

b3 elements. The two divisions can be considered as two demand

points, the first one requiring né units and the other requiring
ng units. The ngy elements can be considered as ngy supply points

each with a supply of one unit. The cost of transporting = unit




v

from‘the :i.t'h supply poznt to the first and second demand points

is given by ¢t B and P Al respectively. The minimum transporta=-
tion cost gives u7 vhich is a better bound than uy ot ou,. 0f courss,

in order to obtain this better bound, we have to solve a transpor-

tetion problem which can be time consuming since it has to be re-
peafeé ng + 1 times to obtain a bound for Z. - 1But s some of .
these (for e.g. n! = 0 or n! = ng etc.) are trivial calculations

3 3
and do not require a transportation problem to be solved.

The efficiency of the branch and bound proceduré outlined
here depends upon the effectiveness of the lower bound at a node
wvhich is difficult to predict without computational experience.
An additional feature described in [10] is the restructuring of
the tree and this can be incorporatéd here also. However; here

we omit the details which are given in [10].

~

1. Mlnlmlze the total within group distance.

S

"If we are interested in only minimizing the total within

5

groups distance”, the objective function (3) would be modified

: ’ so that the constant term 1/n_ does not appear and the term d?j

i is replaced by 4. i As before, the constraint set is given by

(2). 1If necessary, by adding the constraint (6) we can ~

[

'.4 - .

> 1r the total between groups distance is defined to be the sum
of all the distances between entities that do not belong to the
same group, then minimizing the total within groups distance is
equivalent to maximizing the total between groups distance.
Cooper and Mejone [12] suggest a criterion of minimizing.(maxiri-
zing) the total within (between) groups distance subject to a
constant -level of between (within) cluster distances. It shoulsl
be possidle to obtain a constant level of between cluster dis-
tances by adding appropriate constraints. ’



13-

linearize this nev objective and obtain & function very similar
" to that given in (5). )

If the number of groups (M) is restricted to be two, the
obJect1ve (7) would now become

N-1 N ) N-1 N ey )(v s
Min ( T d.. + {z £ e (1=x.)(1-x.
Tget geien 173 * J

i=1 j= 1+1

Since the only constraints in the .problem are
x; =0 or 1 for .ell i

this problem can be solved without dlfflculty by the methods
given in [8]

IIT. Minimize the maximum within group distance.

~

With this criterion, instead of minimizing the total within
group distance, we would minimize the maximum distance within

groups. A mathematical formulation of the problem is

-~

Min 2
gubject to dij X ¥ dij X5 T~ Z < dij
: i=1,2,...N-1
J = i+1,i+2...N
. k=1,2,...M
M
I Xik - 1 i=1,2,...K

1




xij and Z > 0 and integer valued6

This is an integer linear programming éroblem bu% unfor-
tunately the number of constraints increases very repidly with
K and M and hence this formulation is computationally useful only
for small values of N and M. '
. 7 . L N
It should be pointed out that if we solve this problem as a
‘linear programming problem without the variables being restricted
to integers, the solution is Xik = % for all i and k. Hence we
would never be fortunate to obtain an integer solution as the
linear programming solution. Howevér when the number of groups
ﬂM) is equal to two, this problem can be solved efficiently as

outlined below.

_a).yymber,of groups (M) equal to two

‘Let D be the matrix giving the distance dij between the
entities i and j. '
Let ' A and B refer to the two groups. If an element receives a
label A (B) it means that it is‘assignéd_permanéngd~to group A (B).
A label k (integer between 1 gndN) to an element is a temporary
‘label.

Aq}algorithm to solve the problen is given next and a flow

chart is provided in figure 1.

6 Without any loss in generality we may assume that all d,. are

positive integer valued and hence Z will also be an intée er.
. . ,




1.

3.

15.

Let 4, j be the-largest valueTin the'matrix M.

i receives a label A and J receives a label B.

Let.dij = -19, _Let dpq be the current largest value in M.

Let i == p.and j = q. If both i and J have not recelved any la=-
bel go to 4. Otherwise go to 5. T '

Assign i a label i and J e label i. Go to 3.

If either i or jJ but not both has received a label A or B go
to 6. Otherwise go to 8. ,

If j has a label A or B go to 7. Othervise i has a label A (B)
but j does not have a label A or B. If j does not have a
labél, label j as B (A) and go to 3. If j has a label k, give
a label B (A) to all elements with label k and a label A (B)

to all elements with label k. If j has a labél k, give a

label B (A) to all elements with label k and a label A (B) to
all elements with label k. Erase the labels k and k. Go to 3.
j,hgs a label A (3) but i does not havé a lable A or B. If i
does not have a label, label i as B (A) and go to.3. If i has
a label k, give a label B (A) to all elements with label k and
a label A (B) to all elements with label k. If i hag a label
k, give a label B (A) to all elements with label k and a label
A (B) to all elements with label k. Erase the labels k and k.
Go to 3. : ) .

If both i and j have the same label A (B) go to 16. If i has

e laebel A (B) and j has a label B (A) go to 3. Otherwise go

to 9. ’

1)

7

In case of ties, for unambiguity choose the one with the smalle:z-
index i. To break ties further, if any, choose the smallest
index j. v

‘We have assumed.that all dpq are non-negative. If some 4 are

. . Pa
negative, we would set dij equal to a large negative nunbdber.
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16.

Both i and:j do not have a label'AAof B. If either i or 3

" but ‘not both has been labeled before, go to 10. Othervise

If j has & label k(i) go to 11, Otherwise i has a labdbel. Lef

the label of i be k(K). Give j a label kK(k). Go to 3.

Let the label of j be k(k). Give i a label k(k). Go to 3.
Both i and j have a label (but neither of them has a label

A or B). If both i and j have the same label k(k) go to 16.

If i is labeléd k(k) and j is labeled k(k) go to 3. Otherwise

i has a label s(s). If j has a label t go to 15. Otherwise
j has a label t. Assign a label s(s) to all elements with
label t and assign a label s(S) to all elements with label %.

‘Assign a label s(s) to all elements with label t and assign

2 1label s(5) to all elements with label t. Erase the labels
The minimu@ of the maximum distance within groups 1is, equal to
For k = 1,2,...N, all elements with label k aré assigned
e label A and all elements with label k are assigned & label B.
Erase all labels k and k. Remaining elements, if any, that

have not been examined so far can be assigned a label A or B

go ?o 12.
10.
11.
12.

Otherwise go to 13.
13.

go to 1h.
1k,

Erase the labels t and t. Go to 3.
15.

t and t. Go to 3.

" 16.

dij'
g arbitrarilyg. ERD
9

We have assumed here that we are interésted in only minimizing
the maximum within group distance. A better approach would be
to first assign some of the elements to the two groups,so that

the maximunm within group distance is minimized. Once®i's achieve:,

-other eléments may be assigned to the two groups so tﬁat the

minimum distance (considering only those elements not yet assig-
ned) between groups is maximized. :



Let d.. = Max 4d

(o).
v

iJd (mn) mn
Label i as A and j as B
~
dij = -1
Let 4 = Max 4

. (mn) mn

i=p;J=24q

Label

i

»
n
e

17.

Yes Both i and j not .
' labeled . ' v

_ T"

" Yes <:

Either i or j
but not both No
has received a —
label A or B

lLet 3 have a label A (Bﬂ

,__an

a label

[Egbel i'as B (Aﬂ
L=

>
~

] J has a label ' ( 8
. A or B . .
es not have

No .

-——~<<:1 has a labelg_‘\L;

Give a label B (A) to

811 elements with label k
and a label A (B) to_all
elements with label k..
Erase labels k and k.

‘llabel k and a label

i has a label k
give a label B (A)
to 211_elements with

A (B) to all elements
with label k. -
Erase labels k and k.‘

Figure 1

Flow chart for*the algorithm.




Yes Both i and § have the No
: . same label A (B)

18‘

The minimum of the max.
distance = 4, Yes i has a label X
For k = 1 2,...N all : A (B) and j has o
elements with label k - _ a label B (A)

are assigned a label A
and all elements with

label k are assigned

a ladbel B. )
Erase all. labels k and _Yes
k. Remaining elements,if any, : .- ' —-
are assigned arbltrarlly S o

Either i or j
but not both
has a label

No

to A or B.
— Yes J has a label No
28 reC MG >
Label i as i has a label
k(k). k(k) Label

({) j as k(x).

Yes

Both 1 ana j have No .
. the same label )
No 4//,1 has a label k(k)

K and j has .a label
\\\, k(k). \

[E has a label s(Eﬂ
-——£35—<:Léihas a labelgzt>>:7 No

1

Assign a label s(s) to all j has a label t. Assign a
elements with label t and label s(s) to all elements witi:
assign & ladel s(s) to all label T and assign a label s(s)
elements with label t. Erase to ell elements with label t.
the ladbel t and t. Erase the labels t and t.

Flow chart for the algorithm (contd.)
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[1 has & label A (3)]

) ' No '
Yes £ J does not have a la§3£>>_______‘ ' \

No

liabel j as B (Aﬂ -—EEE—<::3 has a 1a£e1 E:>>———_

(3{) . Give a label B (A) to j has a label k .
all elements with label Give a label B (A) to
k and a label A (B) to all elements with label
21l elements with label k and a laebel A (B) to all
k. Erase the labels k elements with label k. _
and k. - Erase the labels k and K

Flow chart for the algorithm (contd.)
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CONCLUSIONS.

In this paper we have éhown how some of the problems in
distance-based cluster analysis can be viewed as a mathematical .
programming problem. Many of the problems are very difficult to
. solve and require further research in terms of solution techniques.
But as we have indicated here, the problem of.minimizing the maxi-
mum within group @istance is easily solvable when the ﬂumber of
groups is restricted to two. Some of the other problems appear to ’
be computatidnally tractable and deserve some cpmputations expe-

rience before drawing further conclusions.
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